1
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The altitude through vertex $A$ of $\triangle A B C$ with position vectors of points $A, B, C$ as $\bar{a}, \bar{b}, \bar{c}$ respectively is

A

$$ \frac{|\overline{\mathrm{b}} \times \overline{\mathrm{c}}|}{|\overline{\mathrm{c}}-\overline{\mathrm{b}}|} $$

B

$$ \frac{|\overline{\mathrm{a}} \times \overline{\mathrm{b}}+\overline{\mathrm{b}} \times \overline{\mathrm{c}}+\overline{\mathrm{c}} \times \overline{\mathrm{a}}|}{|\overline{\mathrm{c}}-\overline{\mathrm{b}}|} $$

C

$$ \frac{|\overline{\mathrm{a}} \times \overline{\mathrm{b}}+\overline{\mathrm{b}} \times \overline{\mathrm{c}}+\overline{\mathrm{c}} \times \overline{\mathrm{a}}|}{|\overline{\mathrm{c}} \times \overline{\mathrm{b}}|} $$

D

$$ \frac{|\overline{\mathrm{b}} \times \overline{\mathrm{c}}|}{|\overline{\mathrm{a}}|} $$

2
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int \frac{\mathrm{d} x}{(x+\mathrm{a})^{\frac{9}{7}}(x-\mathrm{b})^{\frac{5}{7}}}= $$

A
$\frac{7}{\mathrm{a}+\mathrm{b}}\left(\frac{x-\mathrm{b}}{x+\mathrm{a}}\right)^{\frac{9}{7}}+\mathrm{c}$, where c is the constant of integration.
B
$\frac{7}{a+b}\left(\frac{x-b}{x+a}\right)^{\frac{5}{7}}+c$, where $c$ is the constant of integration.
C
$\frac{7}{2(a+b)}\left(\frac{x-b}{x+a}\right)^{\frac{2}{7}}+c$, where $c$ is the constant of integration.
D
$\frac{7}{a+b}\left(\frac{x-b}{x+a}\right)^{\frac{1}{7}}+c$, where $c$ is the constant of integration.
3
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The lines $\bar{r}=(\hat{i}+\hat{j}-\hat{k})+\lambda(3 \hat{i}-\hat{j})$ and $\overline{\mathrm{r}}=(4 \hat{\mathrm{i}}-\hat{\mathrm{k}})+\mu(2 \hat{\mathrm{i}}+3 \hat{\mathrm{k}})$ are

A
intersecting but not perpendicular
B
perpendicular
C
parallel
D
skew lines
4
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ are unit vectors and $|\overline{\mathrm{a}}|=7$, $\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})+\overline{\mathrm{b}} \times(\overline{\mathrm{c}} \times \overline{\mathrm{a}})=\frac{1}{2} \overline{\mathrm{a}}$, then angle between the vectors $\bar{a}$ and $\bar{c}$ and angle between the vectors $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ are respectively

A
$90^{\circ}, 60^{\circ}$
B
$30^{\circ}, 60^{\circ}$
C
$90^{\circ}, 120^{\circ}$
D
$45^{\circ}, 90^{\circ}$
MHT CET Papers
EXAM MAP