If $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ are unit vectors and $|\overline{\mathrm{a}}|=7$, $\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})+\overline{\mathrm{b}} \times(\overline{\mathrm{c}} \times \overline{\mathrm{a}})=\frac{1}{2} \overline{\mathrm{a}}$, then angle between the vectors $\bar{a}$ and $\bar{c}$ and angle between the vectors $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ are respectively
With usual notations in $\triangle \mathrm{ABC}$, if $\angle \mathrm{B}=\frac{\pi}{2}$, and $\tan \frac{\mathrm{A}}{2}, \tan \frac{\mathrm{C}}{2}$ are roots of equation $\mathrm{p} x^2+\mathrm{qx}+\mathrm{r}=0$, $\mathrm{p} \neq 0$, then
$\int \frac{\mathrm{d} x}{x\left(x^3+1\right)}=$
If $\tan ^{-1}(x+1)+\tan ^{-1} x+\tan ^{-1}(x-1)=\tan ^{-1} 3$, then for $x<0$ the value of $500 x^4+270 x^2+997=$