1
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

There are 11 points in a plane of which 5 points are collinear. Then the total number of distinct quadrilaterals with vertices at these points is

A
265
B
330
C
250
D
325
2
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$\int \frac{x^4 \cos \left(\tan ^{-1} x^5\right)}{1+x^{10}} d x$ equals

A

$\frac{\sin \left(\tan ^{-1} x^5\right)}{5}+\mathrm{c}$, where c is the constant of integration

B

$\quad x^4 \sin \left(\tan ^{-1} x^5\right)+\mathrm{c}$, where c is the constant of integration

C

$\frac{\sin \left(\tan ^{-1} x^5\right)}{4}+\mathrm{c}$, where c is the constant of integration

D

$\quad \cos \left(\tan ^{-1} x^5\right)+\mathrm{c}$, where c is the constant of integration

3
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The length of the perpendicular drawn from the origin on the normal to the curve $x^2+2 x y-3 y^2=0$ at the point $(2,2)$ is

A
$\sqrt{2}$ units
B
$3 \sqrt{2}$ units
C
$2 \sqrt{2}$ units
D
$\frac{1}{\sqrt{2}}$ units
4
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(x)=\log (1+x)-\frac{2 x}{2+x}$ then $\mathrm{f}(x)$ is increasing in

A
$(-1, \infty)$
B
$(-\infty, \infty)$
C
$(0, \infty)$
D
$(1, \infty)$
MHT CET Papers
EXAM MAP