1
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the lines $x=a y-1=z-2$ and $x=3 y-2=\mathrm{bz}-2(\mathrm{ab} \neq 0)$ are coplanar, then

A
$\mathrm{a}=1, \mathrm{~b}=\frac{1}{2}$
B
$\mathrm{a}=2, \mathrm{~b}=2$
C
$\mathrm{a}=\frac{1}{2}, \mathrm{~b}=\frac{1}{2}$
D
$\mathrm{b}=1, \mathrm{a} \in \mathbb{R}-\{0\}$
2
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\left(\tan ^{-1} x\right)^2+\left(\cot ^{-1} x\right)^2=\frac{5 \pi^2}{8}$, then $x^2+1=$

A
-1
B
2
C
1
D
-2
3
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $p \equiv$ The switch $S_1$ is closed, $q \equiv$ The switch $\mathrm{S}_2$ is closed, $\mathrm{r} \equiv$ switch $\mathrm{S}_3$ is closed, then symbolic form of following switching circuit is equivalent to

A
p
B
q
C
$p \wedge q$
D
$p \vee q$
4
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable function having $\mathrm{f}(3)=3, \mathrm{f}^{\prime}(3)=\frac{1}{27}$ and $\mathrm{g}(x)= \begin{cases}\int_3^{\mathrm{f}(x)} \frac{3 \mathrm{t}^2}{x-3} \mathrm{dt}, & \text { if } x \neq 3 \\ \mathrm{~K}, & \text { if } x=3\end{cases}$ is continuous at $x=3$, then $\mathrm{K}=$

A
1
B
3
C
$\frac{1}{3}$
D
9
MHT CET Papers
EXAM MAP