The lines $\bar{r}=(\hat{i}+\hat{j}-\hat{k})+\lambda(3 \hat{i}-\hat{j})$ and $\overline{\mathrm{r}}=(4 \hat{\mathrm{i}}-\hat{\mathrm{k}})+\mu(2 \hat{\mathrm{i}}+3 \hat{\mathrm{k}})$ are
If $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ are unit vectors and $|\overline{\mathrm{a}}|=7$, $\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})+\overline{\mathrm{b}} \times(\overline{\mathrm{c}} \times \overline{\mathrm{a}})=\frac{1}{2} \overline{\mathrm{a}}$, then angle between the vectors $\bar{a}$ and $\bar{c}$ and angle between the vectors $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ are respectively
With usual notations in $\triangle \mathrm{ABC}$, if $\angle \mathrm{B}=\frac{\pi}{2}$, and $\tan \frac{\mathrm{A}}{2}, \tan \frac{\mathrm{C}}{2}$ are roots of equation $\mathrm{p} x^2+\mathrm{qx}+\mathrm{r}=0$, $\mathrm{p} \neq 0$, then
$\int \frac{\mathrm{d} x}{x\left(x^3+1\right)}=$