1
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The lines $\bar{r}=(\hat{i}+\hat{j}-\hat{k})+\lambda(3 \hat{i}-\hat{j})$ and $\overline{\mathrm{r}}=(4 \hat{\mathrm{i}}-\hat{\mathrm{k}})+\mu(2 \hat{\mathrm{i}}+3 \hat{\mathrm{k}})$ are

A
intersecting but not perpendicular
B
perpendicular
C
parallel
D
skew lines
2
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ are unit vectors and $|\overline{\mathrm{a}}|=7$, $\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})+\overline{\mathrm{b}} \times(\overline{\mathrm{c}} \times \overline{\mathrm{a}})=\frac{1}{2} \overline{\mathrm{a}}$, then angle between the vectors $\bar{a}$ and $\bar{c}$ and angle between the vectors $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$ are respectively

A
$90^{\circ}, 60^{\circ}$
B
$30^{\circ}, 60^{\circ}$
C
$90^{\circ}, 120^{\circ}$
D
$45^{\circ}, 90^{\circ}$
3
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

With usual notations in $\triangle \mathrm{ABC}$, if $\angle \mathrm{B}=\frac{\pi}{2}$, and $\tan \frac{\mathrm{A}}{2}, \tan \frac{\mathrm{C}}{2}$ are roots of equation $\mathrm{p} x^2+\mathrm{qx}+\mathrm{r}=0$, $\mathrm{p} \neq 0$, then

A
$\mathrm{p}+\mathrm{q}=\mathrm{r}$
B
$\mathrm{r}+\mathrm{p}=\mathrm{q}$
C
$\mathrm{r}=\mathrm{p}$
D
$\mathrm{p}=\mathrm{q}$
4
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$\int \frac{\mathrm{d} x}{x\left(x^3+1\right)}=$

A
$\quad \log \left(\frac{x^3}{x^3+1}\right)+\mathrm{c}$, where c is the constant of integration
B
$\frac{1}{3} \log \left(\sqrt[3]{\frac{x^3}{x^3+1}}\right)+\mathrm{c}$, where c is the constant of integration
C
$\quad \log \left(\sqrt[3]{\frac{x^3}{x^3+1}}\right)+\mathrm{c}$, where c is the constant of integration
D
$\frac{1}{3} \log \left(\frac{x^3+1}{x^3}\right)+\mathrm{c}$, where c is the constant of integration
MHT CET Papers
EXAM MAP