1
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The order of the differential equation whose general solution is given by $y=\left(\mathrm{C}_1+\mathrm{C}_2\right) \sin \left(x+\mathrm{C}_3\right)-\mathrm{C}_4 \mathrm{e}^{x+\mathrm{C}_5}$ is (where $\mathrm{C}_1, \mathrm{C}_2, \mathrm{C}_3, \mathrm{C}_4, \mathrm{C}_5$ are arbitrary constants)

A
5
B
4
C
2
D
3
2
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

In L.P.P., the maximum value of objective function $\mathrm{Z}=6 x+3 y$ subject to constraints $x+y \leq 5, x+2 y \geq 4,4 x+y \leq 12, x, y \geq 0$ is

A
$\frac{132}{7}$
B
22
C
15
D
$\frac{122}{7}$
3
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the lines $x=a y-1=z-2$ and $x=3 y-2=\mathrm{bz}-2(\mathrm{ab} \neq 0)$ are coplanar, then

A
$\mathrm{a}=1, \mathrm{~b}=\frac{1}{2}$
B
$\mathrm{a}=2, \mathrm{~b}=2$
C
$\mathrm{a}=\frac{1}{2}, \mathrm{~b}=\frac{1}{2}$
D
$\mathrm{b}=1, \mathrm{a} \in \mathbb{R}-\{0\}$
4
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\left(\tan ^{-1} x\right)^2+\left(\cot ^{-1} x\right)^2=\frac{5 \pi^2}{8}$, then $x^2+1=$

A
-1
B
2
C
1
D
-2
MHT CET Papers
EXAM MAP