1
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable function having $\mathrm{f}(3)=3, \mathrm{f}^{\prime}(3)=\frac{1}{27}$ and $\mathrm{g}(x)= \begin{cases}\int_3^{\mathrm{f}(x)} \frac{3 \mathrm{t}^2}{x-3} \mathrm{dt}, & \text { if } x \neq 3 \\ \mathrm{~K}, & \text { if } x=3\end{cases}$ is continuous at $x=3$, then $\mathrm{K}=$

A
1
B
3
C
$\frac{1}{3}$
D
9
2
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The area bounded by the curve $y=4 x-x^2$ and X - axis in square units, is $\qquad$

A
$\frac{32}{3}$
B
16
C
32
D
$21 \frac{1}{3}$
3
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The Cartesian equation of the plane $\overline{\mathrm{r}}=(2 \hat{\mathrm{i}}-3 \hat{\mathrm{j}})+\lambda(\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})+\mu(2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+\hat{\mathrm{k}})$ is

A
$5 x-4 y+\mathrm{z}=22$
B
$\quad 5 x-3 y+\mathrm{z}=19$
C
$5 x-3 y-z=19$
D
$5 x-4 y-z=22$
4
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the line $\frac{x-3}{2}=\frac{y+5}{-1}=\frac{z+2}{2}$ lies in the plane $\alpha x+3 y-z+\beta=0$, then values of $\alpha$ and $\beta$ respectively are ….

A
$\frac{3}{2}, \frac{13}{2}$
B
$\frac{5}{2}, \frac{9}{2}$
C
$-\frac{5}{2}, \frac{9}{2}$
D
$\frac{5}{2}, \frac{11}{2}$
MHT CET Papers
EXAM MAP