1
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The slopes of the lines represented by $6 x^2+2 \mathrm{hxy}+y^2=0$ are in the ratio $2: 3$, then $\mathrm{h}=$

A
$\pm \frac{7}{2}$
B
$\pm \frac{1}{2}$
C
$\pm \frac{5}{2}$
D
$\pm \frac{2}{5}$
2
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\theta$ is an obtuse angle between vectors $\bar{a}$ and $\overline{\mathrm{b}}$ such that $|\overline{\mathrm{a}}|=5,|\overline{\mathrm{~b}}|=3$ and $|\overline{\mathrm{a}} \times \overline{\mathrm{b}}|=5 \sqrt{5}$ then $\bar{a} \cdot \bar{b}=$

A
10
B
-10
C
5
D
-5
3
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the plane $\frac{x}{2}-\frac{y}{3}-\frac{\mathrm{z}}{5}=1$ cuts the co-ordinate axes in points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ respectively, then the area of the triangle $A B C$ is

A
$\frac{17}{2}$ sq. units.
B
$\frac{19}{2}$ sq. units
C
$\frac{11}{2}$ sq. units
D
$\frac{15}{2}$ sq. units
4
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The rate of increase of the population of a city is proportional to the population present at that instant. In the period of 40 years the population increased from 30,000 to 40,000 . At any time t the population is $(a)(b)^{\frac{t}{40}}$. Then the values of $a$ and $b$ are respectively

A
$30,000, \frac{2}{3}$
B
$30,000, \frac{4}{3}$
C
$40,000, \frac{2}{3}$
D
$40,000, \frac{3}{4}$
MHT CET Papers
EXAM MAP