1
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\tan ^{-1}(x+1)+\tan ^{-1} x+\tan ^{-1}(x-1)=\tan ^{-1} 3$, then for $x<0$ the value of $500 x^4+270 x^2+997=$

A
6716
B
1767
C
1768
D
6717
2
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{f}: \mathbb{R}-\{2\} \rightarrow \mathbb{R}-\{1\}$ defined by $\mathrm{f}(x)=\frac{x-3}{x-2}$ and $\mathrm{g}: \mathbb{R} \rightarrow \mathbb{R}$ defined by $\mathrm{g}(x)=3 x-2$, then sum of all values of $x$ for which $\mathrm{f}^{-1}(x)+\mathrm{g}^{-1}(x)=\frac{19}{6}$ is

A
$\frac{5}{2}$
B
$\frac{7}{2}$
C
$\frac{9}{2}$
D
$\frac{11}{2}$
3
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

There are 11 points in a plane of which 5 points are collinear. Then the total number of distinct quadrilaterals with vertices at these points is

A
265
B
330
C
250
D
325
4
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$\int \frac{x^4 \cos \left(\tan ^{-1} x^5\right)}{1+x^{10}} d x$ equals

A

$\frac{\sin \left(\tan ^{-1} x^5\right)}{5}+\mathrm{c}$, where c is the constant of integration

B

$\quad x^4 \sin \left(\tan ^{-1} x^5\right)+\mathrm{c}$, where c is the constant of integration

C

$\frac{\sin \left(\tan ^{-1} x^5\right)}{4}+\mathrm{c}$, where c is the constant of integration

D

$\quad \cos \left(\tan ^{-1} x^5\right)+\mathrm{c}$, where c is the constant of integration

MHT CET Papers
EXAM MAP