1
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The angle $\theta$, at which the curves $y=3^x$ and $y=7^x$ intersect, is given by

A
$\tan \theta=\frac{\log \left(\frac{3}{7}\right)}{1+(\log 3)(\log 7)}$
B
$\tan \theta=\frac{\log \left(\frac{7}{3}\right)}{1+(\log 3)(\log 7)}$
C
$\tan \theta=\frac{\log \left(\frac{3}{7}\right)}{1-(\log 3)(\log 7)}$
D
$\quad \tan \theta=\frac{\log \left(\frac{7}{3}\right)}{1-(\log 3)(\log 7)}$
2
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The function $\mathrm{f}(x)=x^3-6 x^2+\mathrm{ax}+\mathrm{b}$ satisfies the conditions of Rolle's theorem in $[1,3]$. Then the values of $a$ and $b$ are respectively

A
$11,-6$
B
$-6,11$
C
$-11,6$
D
$6,-11$
3
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If

$$ \sqrt{y-\sqrt{y-\sqrt{y-\ldots \ldots \ldots \infty}}}=\sqrt{x+\sqrt{x+\sqrt{x+\ldots \ldots \ldots \infty}}} $$

then $\frac{\mathrm{d} y}{\mathrm{~d} x}=$

A
$\frac{y+x+1}{y-x+1}$
B
$\frac{y-x-1}{y-x+1}$
C
$\frac{y-x+1}{y-x-1}$
D
1
4
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $x=\operatorname{sint}$ and $y=\sin p t$, then the value of

$$ \left(1-x^2\right) \frac{\mathrm{d}^2 y}{\mathrm{~d} x^2}-x \frac{\mathrm{~d} y}{\mathrm{~d} x}+\mathrm{p}^2 y= $$

A
0
B
1
C
-1
D
$\sqrt{2}$
MHT CET Papers
EXAM MAP