1
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of differential equation $\left(y^2-x^2\right) \mathrm{d} x=x y \mathrm{~d} y(x \neq 0)$ is

A
$2 x^2 \log x+y^2+2 \mathrm{cx}^2=0$, where c is the constant of integration
B
$\quad 2 x^2 \log x-y^2+2 \mathrm{cx}^2=0$, where c is the constant of integration
C
$x^2 \log x+y^2+2 \mathrm{cx}^2=0$, where c is the constant of integration
D
$x^2 \log x-y^2+2 \mathrm{cx}^2=0$, where c is the constant of integration
2
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+1
-0
The fundamental frequencies of vibrations of air column in pipe open at both ends and in pipe closed at one end are ' $\mathrm{n}_1$ ' and ' $\mathrm{n}_2$ ' respectively, then
A
$\mathrm{n}_1=\mathrm{n}_2$
B
$\mathrm{n}_1=2 \mathrm{n}_2$
C
$\quad 2 n_1=n_2$
D
$3 n_1=4 n_2$
3
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+1
-0

A force F is applied on a square plate of side L . If the percentage error in determining F is $3 \%$ and that in L is $2 \%$, then the percentage error in determining the pressure is

A
$7 \%$
B
$5 \%$
C
$3 \%$
D
$2 \%$
4
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+1
-0

A bob of mass ' $m$ ' is tied by a massless string whose other end is wound on a flywheel (disc) of radius ' $R$ ' and mass ' $m$ '. When released from the rest, the bob starts falling vertically downwards. If the bob has covered a vertical distance ' $h$ ', then angular speed of wheel will be (There is no slipping between string and wheel, g - acceleration due to gravity)

A
$\frac{2}{\mathrm{R}} \sqrt{\frac{\mathrm{gh}}{3}}$
B
$\frac{1}{\mathrm{R}} \sqrt{\frac{2 \mathrm{gh}}{3}}$
C
$\mathrm{R} \sqrt{\frac{2 \mathrm{gh}}{3}}$
D
$2 R \sqrt{\frac{g h}{3}}$
MHT CET Papers
EXAM MAP