A particle starts oscillating simple harmonically from its mean position with time period ' $T$ '. At time $\mathrm{t}=\frac{\mathrm{T}}{6}$, the ratio of the potential energy to kinetic energy of the particle is
$$ \left[\sin 30^{\circ}=\cos 60^{\circ}=0 \cdot 5, \cos 30^{\circ}=\sin 60^{\circ}=\sqrt{3} / 2\right] $$
A coil of ' $n$ ' turns and resistance $R \Omega$ is connected in series with a resistance $\frac{R}{2}$. The combination is moved for time ' $t$ ' second through magnetic flux $\phi_1$ to $\phi_2$. The induced current in the circuit is
An electron of mass ' $m$ ' and charge ' $e$ ' initially at rest gets accelerated by a constant electric field ' E '. The rate of change of de-Broglie wavelength of the electron at time ' $t$ ' is
(Ignore relativistic effect)( $\mathrm{h}=$ Planck's constant)
The moment of inertia of a solid sphere of mass ' $m$ ' and radius ' $R$ ' about its diametric axis is ' $I$ '. Its moment of inertia about a tangent in the plane is