1
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int_{\log \frac{1}{2}}^{\log 2} \sin \left(\frac{\mathrm{e}^x-1}{\mathrm{e}^x+1}\right) \mathrm{d} x= $$

A
0
B
1
C
$\quad \cos \frac{1}{2}$
D
$\quad 2 \log \frac{1}{2}$
2
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the vectors $\overline{\mathrm{a}}=\mathrm{c}\left(\log _7 x\right) \hat{\mathrm{i}}+2 \hat{\mathrm{j}}+3 \hat{\mathrm{k}} \quad$ and $\overline{\mathrm{b}}=\left(\log _\gamma x\right) \hat{\mathrm{i}}+3 \mathrm{c}\left(\log _\gamma x\right) \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$ make obtuse angle for any $x>0$, then c belongs to

A
$\left(0, \frac{3}{4}\right)$
B
$\left(\frac{-3}{4}, 0\right)$
C
$\left(\frac{-4}{3}, 0\right)$
D
$\left(0, \frac{4}{3}\right)$
3
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int_{\frac{-\pi}{4}}^{\frac{\pi}{4}} \sin ^{-4} x d x= $$

A
$\frac{8}{3}$
B
$-\frac{8}{3}$
C
$\frac{2}{3}$
D
$-\frac{2}{3}$
4
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The altitude through vertex $A$ of $\triangle A B C$ with position vectors of points $A, B, C$ as $\bar{a}, \bar{b}, \bar{c}$ respectively is

A

$$ \frac{|\overline{\mathrm{b}} \times \overline{\mathrm{c}}|}{|\overline{\mathrm{c}}-\overline{\mathrm{b}}|} $$

B

$$ \frac{|\overline{\mathrm{a}} \times \overline{\mathrm{b}}+\overline{\mathrm{b}} \times \overline{\mathrm{c}}+\overline{\mathrm{c}} \times \overline{\mathrm{a}}|}{|\overline{\mathrm{c}}-\overline{\mathrm{b}}|} $$

C

$$ \frac{|\overline{\mathrm{a}} \times \overline{\mathrm{b}}+\overline{\mathrm{b}} \times \overline{\mathrm{c}}+\overline{\mathrm{c}} \times \overline{\mathrm{a}}|}{|\overline{\mathrm{c}} \times \overline{\mathrm{b}}|} $$

D

$$ \frac{|\overline{\mathrm{b}} \times \overline{\mathrm{c}}|}{|\overline{\mathrm{a}}|} $$

MHT CET Papers
EXAM MAP