1
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The common principal solution of the equations $\sin \theta=-\frac{1}{2}$ and $\tan \theta=\frac{1}{\sqrt{3}}$ is

A
$\frac{\pi}{6}$
B
$\frac{5 \pi}{6}$
C
$\frac{7 \pi}{6}$
D
$\frac{11 \pi}{6}$
2
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The slopes of the lines represented by $6 x^2+2 \mathrm{hxy}+y^2=0$ are in the ratio $2: 3$, then $\mathrm{h}=$

A
$\pm \frac{7}{2}$
B
$\pm \frac{1}{2}$
C
$\pm \frac{5}{2}$
D
$\pm \frac{2}{5}$
3
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\theta$ is an obtuse angle between vectors $\bar{a}$ and $\overline{\mathrm{b}}$ such that $|\overline{\mathrm{a}}|=5,|\overline{\mathrm{~b}}|=3$ and $|\overline{\mathrm{a}} \times \overline{\mathrm{b}}|=5 \sqrt{5}$ then $\bar{a} \cdot \bar{b}=$

A
10
B
-10
C
5
D
-5
4
MHT CET 2025 25th April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the plane $\frac{x}{2}-\frac{y}{3}-\frac{\mathrm{z}}{5}=1$ cuts the co-ordinate axes in points $\mathrm{A}, \mathrm{B}, \mathrm{C}$ respectively, then the area of the triangle $A B C$ is

A
$\frac{17}{2}$ sq. units.
B
$\frac{19}{2}$ sq. units
C
$\frac{11}{2}$ sq. units
D
$\frac{15}{2}$ sq. units
MHT CET Papers
EXAM MAP