1
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of the integral $\int_1^2 \frac{x \mathrm{~d} x}{(x+2)(x+3)}$ is

A
$\quad \log \left(\frac{125}{16}\right)$
B
$\quad \log \left(\frac{1024}{1125}\right)$
C
$\quad \log \left(\frac{16}{125}\right)$
D
$\quad \log \left(\frac{1125}{1024}\right)$
2
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}+\sin \left(\frac{x+y}{2}\right)=\sin \left(\frac{x-y}{2}\right)$ is

A
$\log \tan \left(\frac{y}{2}\right)=\mathrm{c}-2 \sin \frac{x}{2}$, where c is the constant of integration
B
$\log \tan \left(\frac{y}{4}\right)=\mathrm{c}-2 \sin \left(\frac{x}{2}\right)$, where c is the constant of integration
C
$\log \left[\tan \left(\frac{y}{2}+\frac{\pi}{4}\right)\right]=\mathrm{c}-2 \sin x$, where c is the constant of integration
D
$\log \left[\tan \left(\frac{y}{4}+\frac{\pi}{4}\right)\right]=\mathrm{c}-2 \sin \frac{x}{2}$, where c is the constant of integration
3
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Four defective oranges are accidentally mixed with sixteen good ones. Three oranges are drawn from the mixed lot. The probability distribution of defective oranges is

A

$$ \begin{array}{|c|c|c|c|c|} \hline \mathrm{X} & 0 & 1 & 2 & 3 \\ \hline \mathrm{P}(\mathrm{X}=x) & \frac{28}{57} & \frac{8}{95} & \frac{8}{19} & \frac{1}{285} \\ \hline \end{array} $$

B

$$ \begin{array}{|c|c|c|c|c|} \hline \mathrm{X} & 0 & 1 & 2 & 3 \\ \hline \mathrm{P}(\mathrm{X}=x) & \frac{28}{57} & \frac{8}{19} & \frac{8}{95} & \frac{1}{285} \\ \hline \end{array} $$

C

$$ \begin{array}{|c|c|c|c|c|} \hline \mathrm{X} & 0 & 1 & 2 & 3 \\ \hline \mathrm{P}(\mathrm{X}=x) & \frac{28}{57} & \frac{8}{95} & \frac{1}{285} & \frac{8}{19} \\ \hline \end{array} $$

D

$$ \begin{array}{|c|c|c|c|c|} \hline \mathrm{X} & 0 & 1 & 2 & 3 \\ \hline \mathrm{P}(\mathrm{X}=x) & \frac{1}{285} & \frac{8}{95} & \frac{8}{19} & \frac{28}{57} \\ \hline \end{array} $$

4
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the curve passing through $\left(2, \frac{9}{2}\right)$ and having the slope $\left(1-\frac{1}{x^2}\right)$ at $(x, y)$ is

A
$x y=x^2+2 x+1$
B
$x y=x^2+x+2$
C
$x y=x^2+x+5$
D
$x y=x^2+2 x+5$
MHT CET Papers
EXAM MAP