1
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0
Three urns respectively contain 2 white and 3 black, 3 white and 2 black and 1 white and 4 black balls. If one ball is drawn from each um, then the probability that the selection contains 1 black and 2 white balls is
A
$\frac{13}{125}$
B
$\frac{37}{125}$
C
$\frac{28}{125}$
D
$\frac{33}{125}$
2
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The lines $x+2 \mathrm{a} y+\mathrm{a}=0, x+3 \mathrm{~b} y+\mathrm{b}=0$, $x+4 c y+c=0$ are concurrent then $a, b, c$ are in

A
Harmonic progression
B
Geometric progression
C
Arithmetic progression
D
Arithmetico geometric progression
3
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

In a box containing 100 apples, 10 are defective. The probability that in a sample of 6 apples, 3 are defective is

A
0.1548
B
0.1458
C
0.01854
D
0.01458
4
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of the integral $\int_1^2 \frac{x \mathrm{~d} x}{(x+2)(x+3)}$ is

A
$\quad \log \left(\frac{125}{16}\right)$
B
$\quad \log \left(\frac{1024}{1125}\right)$
C
$\quad \log \left(\frac{16}{125}\right)$
D
$\quad \log \left(\frac{1125}{1024}\right)$
MHT CET Papers
EXAM MAP