1
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Derivative of $x^{\left(x^x\right)}$ is

A
$\quad x^{\left(x^x\right)}\left(x^x+1+\log x\right)$
B
$x^{\left(x^x\right)}\left(x^x+\log x\right)$
C
$x^{\left(x^x\right)}\left(x^x+x^{x-1} \log x(1+\log x)\right)$
D
$\quad x^{\left(x^x\right)}\left(x^{x-1}+x^x \log x(1+\log x)\right)$
2
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The number of solutions of $\tan ^{-1}\left(x+\frac{2}{x}\right)-\tan ^{-1}\left(\frac{4}{x}\right)-\tan ^{-1}\left(x-\frac{2}{x}\right)=0$ are

A
1
B
2
C
3
D
0
3
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The derivative of $\tan ^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$ w.r.t. $\tan ^{-1}\left(\frac{2 x \sqrt{1-x^2}}{1-2 x^2}\right)$ at $x=0$ is

A
$\frac{1}{8}$
B
$\frac{1}{4}$
C
$\frac{1}{2}$
D
1
4
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The normal to the curve $x=9(1+\cos \theta)$, $y=9 \sin \theta$ at $\theta$ always passes through the fixed point

A
$(9,0)$
B
$(8,9)$
C
$(0,9)$
D
$(9,8)$
MHT CET Papers
EXAM MAP