1
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \mathop {\lim }\limits_{x \to 1}\left(\log _3 3 x\right)^{\log _x 8}=\ldots $$

A
$\mathrm{e}^{\log _3 8}$
B
$\quad \log _8 3$
C
$e^{\log _8 3}$
D
$\log _3 8$
2
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The function $\mathrm{f}(x)=\sin ^4 x+\cos ^4 x$ increases if

A
$0 < x < \frac{\pi}{8}$
B
$\frac{\pi}{4} < x < \frac{\pi}{2}$
C
$\frac{3 \pi}{8} < x < \frac{5 \pi}{8}$
D
$\frac{5 \pi}{8} < x < \frac{3 \pi}{4}$
3
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The values of $b$ and $c$ for which the identity $\mathrm{f}(x+1)-\mathrm{f}(x)=8 x+3$ is satisfied, where $\mathrm{f}(x)=\mathrm{b} x^2+\mathrm{c} x+\mathrm{d}$, are

A
$\mathrm{b}=2, \mathrm{c}=1$
B
$\mathrm{b}=4, \mathrm{c}=-1$
C
$\mathrm{b}=1, \mathrm{c}=2$
D
$\mathrm{b}=3, \mathrm{c}=-1$
4
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int \frac{x^3}{x^4+5 x^2+4} d x= $$

A

$\frac{1}{3} \log \left(\frac{\left(x^2+4\right)^2}{\sqrt{x^2+1}}\right)+\mathrm{c}$, where c is the constant of integration

B
$\quad \log \left(\frac{\left(x^2+4\right)^2}{\sqrt{x^2+1}}\right)+\mathrm{c}$, where c is the constant of integration
C
$3 \log \left(\frac{\left(x^2+4\right)^2}{\sqrt{x^2+1}}\right)+\mathrm{c}$, where c is the constant of integration
D
$\frac{2}{3} \log \left(\frac{\left(x^2+4\right)^2}{\sqrt{x^2+1}}\right)+\mathrm{c}$, where c is the constant of integration
MHT CET Papers
EXAM MAP