1
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The values of $b$ and $c$ for which the identity $\mathrm{f}(x+1)-\mathrm{f}(x)=8 x+3$ is satisfied, where $\mathrm{f}(x)=\mathrm{b} x^2+\mathrm{c} x+\mathrm{d}$, are

A
$\mathrm{b}=2, \mathrm{c}=1$
B
$\mathrm{b}=4, \mathrm{c}=-1$
C
$\mathrm{b}=1, \mathrm{c}=2$
D
$\mathrm{b}=3, \mathrm{c}=-1$
2
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int \frac{x^3}{x^4+5 x^2+4} d x= $$

A

$\frac{1}{3} \log \left(\frac{\left(x^2+4\right)^2}{\sqrt{x^2+1}}\right)+\mathrm{c}$, where c is the constant of integration

B
$\quad \log \left(\frac{\left(x^2+4\right)^2}{\sqrt{x^2+1}}\right)+\mathrm{c}$, where c is the constant of integration
C
$3 \log \left(\frac{\left(x^2+4\right)^2}{\sqrt{x^2+1}}\right)+\mathrm{c}$, where c is the constant of integration
D
$\frac{2}{3} \log \left(\frac{\left(x^2+4\right)^2}{\sqrt{x^2+1}}\right)+\mathrm{c}$, where c is the constant of integration
3
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$\mathrm{z}=\frac{3+2 \mathrm{i} \sin \theta}{1-2 \mathrm{i} \sin \theta},(\mathrm{i}=\sqrt{-1})$ will be purely imaginary if $\theta=$

A
$2 n \pi \pm \frac{\pi}{8}$, where $n \in \mathbb{Z}$
B
$n \pi+\frac{\pi}{8}$, where $n \in \mathbb{Z}$
C
$n \pi \pm \frac{\pi}{3}$, where $n \in \mathbb{Z}$
D
$n \pi$, where $n \in \mathbb{Z}$
4
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equations of the tangents to the circle $x^2+y^2=36$ which are perpendicular to the line $5 x+y=2$, are

A
$\quad x+5 y \pm 6 \sqrt{26}=0$
B
$\quad x-5 y \pm 6 \sqrt{26}=0$
C
$\quad 5 x-y \pm 6 \sqrt{26}=0$
D
$\quad 5 x+y \pm 6 \sqrt{26}=0$
MHT CET Papers
EXAM MAP