1
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\frac{1}{6} \sin \theta, \cos \theta, \tan \theta$ are in G.P., then the general solution of $\theta$ is

A
$2 \mathrm{n} \pi \pm \frac{\pi}{3}, \mathrm{n} \in \mathbb{Z}$
B
$n \pi+\frac{\pi}{3}, n \in \mathbb{Z}$
C
$\mathrm{n} \pi+\frac{\pi}{4}, \mathrm{n} \in \mathbb{Z}$
D
$\quad 2 \mathrm{n} \pi \pm \frac{\pi}{6}, \mathrm{n} \in \mathbb{Z}$
2
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $f$ be a function which is continuous and differentiable for all $x$. If $\mathrm{f}(1)=1$ and $\mathrm{f}^{\prime}(x) \leq 5$ for all $x$ in $[1,5]$, then the maximum value of $\mathrm{f}(5)$ is

A
5
B
20
C
6
D
21
3
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle ABC with usual notations if, $\cot \frac{A}{2}=\frac{b+c}{a}$, then the triangle $A B C$ is

A
an isosceles triangle.
B
an equilateral triangle.
C
a right angled triangle.
D
an obtuse angled triangle.
4
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If matrix $\quad A=\frac{1}{11}\left[\begin{array}{rrr}-1 & 7 & -24 \\ 2 & a & 4 \\ 2 & -3 & 15\end{array}\right] \quad$ and $A^{-1}=\left[\begin{array}{rrr}3 & 3 & 4 \\ 2 & -3 & 4 \\ b & -1 & c\end{array}\right]$, then the values of $a, b, c$ respectively are ……

A
$3,1,0$
B
$\frac{-6}{11}, 0, \frac{1}{11}$
C
$-3,0,1$
D
$\frac{-3}{11}, 0, \frac{1}{11}$
MHT CET Papers
EXAM MAP