1
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\bar{p}=2 \hat{i}+\hat{k}, \bar{q}=\hat{i}+\hat{j}+\hat{k}, \bar{r}=4 \hat{i}-3 \hat{j}+7 \hat{k}$ and a vector $\overline{\mathrm{m}}$ is such that $\overline{\mathrm{m}} \times \overline{\mathrm{q}}=\overline{\mathrm{r}} \times \overline{\mathrm{q}}, \overline{\mathrm{m}} \cdot \overline{\mathrm{p}}=0$, then $\overline{\mathrm{m}}=\ldots$.

A
$\hat{\mathrm{i}}-8 \hat{\mathrm{j}}-2 \hat{\mathrm{k}}$
B
$-10 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+7 \hat{\mathrm{k}}$
C
$-\hat{\mathrm{i}}-8 \hat{\mathrm{j}}+2 \hat{\mathrm{k}}$
D
$2 \hat{i}+4 \hat{j}+\hat{k}$
2
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the point $(1, \alpha, \beta)$ lies on the line of the shortest distance between the lines $\frac{x+2}{-3}=\frac{y-2}{4}=\frac{z-5}{2}$ and $\frac{x+2}{-1}=\frac{y+6}{2}, \mathrm{z}=1$, then $\alpha+\beta=$

A
3
B
7
C
-3
D
-7
3
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The angle between the lines $x-3 y-4=0,4 y-z+5=0$ and $x+3 y-11=0,2 y-z+6=0$ is

A
$\frac{\pi}{2}$
B
$\frac{\pi}{4}$
C
$\frac{\pi}{6}$
D
$\frac{\pi}{3}$
4
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the area of parallelogram, whose diagonals are $\hat{\mathrm{i}}-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}$ and $2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+\alpha \hat{\mathrm{k}}$ is $\frac{\sqrt{93}}{2}$ sq. units, then $\alpha=$

A
$-4,2$
B
$-3,-2$
C
2,1
D
4,2
MHT CET Papers
EXAM MAP