Let $f$ be a function which is continuous and differentiable for all $x$. If $\mathrm{f}(1)=1$ and $\mathrm{f}^{\prime}(x) \leq 5$ for all $x$ in $[1,5]$, then the maximum value of $\mathrm{f}(5)$ is
In a triangle ABC with usual notations if, $\cot \frac{A}{2}=\frac{b+c}{a}$, then the triangle $A B C$ is
If matrix $\quad A=\frac{1}{11}\left[\begin{array}{rrr}-1 & 7 & -24 \\ 2 & a & 4 \\ 2 & -3 & 15\end{array}\right] \quad$ and $A^{-1}=\left[\begin{array}{rrr}3 & 3 & 4 \\ 2 & -3 & 4 \\ b & -1 & c\end{array}\right]$, then the values of $a, b, c$ respectively are ……
$p:$ If 7 is an odd number then 7 is divisible by 2 .
q : If 7 is prime number then 7 is an odd number. If $V_1$ and $V_2$ are respective truth values of contrapositive of p and q then $\left(\mathrm{V}_1, \mathrm{~V}_2\right) \equiv$