If a random variable $X$ has p.d.f. $f(x)=\left\{\begin{array}{ll}\frac{a x^2}{2}+b x & , \text { if } 1 \leqslant x \leqslant 3 \\ 0 & , \text { otherwise }\end{array}\right.$ and $f(2)=2$, then the values of $a$ and $b$ are, respectively
If $\bar{p}=2 \hat{i}+\hat{k}, \bar{q}=\hat{i}+\hat{j}+\hat{k}, \bar{r}=4 \hat{i}-3 \hat{j}+7 \hat{k}$ and a vector $\overline{\mathrm{m}}$ is such that $\overline{\mathrm{m}} \times \overline{\mathrm{q}}=\overline{\mathrm{r}} \times \overline{\mathrm{q}}, \overline{\mathrm{m}} \cdot \overline{\mathrm{p}}=0$, then $\overline{\mathrm{m}}=\ldots$.
If the point $(1, \alpha, \beta)$ lies on the line of the shortest distance between the lines $\frac{x+2}{-3}=\frac{y-2}{4}=\frac{z-5}{2}$ and $\frac{x+2}{-1}=\frac{y+6}{2}, \mathrm{z}=1$, then $\alpha+\beta=$
The angle between the lines $x-3 y-4=0,4 y-z+5=0$ and $x+3 y-11=0,2 y-z+6=0$ is