1
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int_0^{\frac{\pi}{4}}(\sqrt{\tan x}+\sqrt{\cot x}) d x= $$

A
$\sqrt{2} \pi$
B
$\frac{\pi}{2}$
C
$2 \pi$
D
$\frac{\pi}{\sqrt{2}}$
2
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If a curve $y=a \sqrt{x}+b x$ passes through the point $(1,2)$ and the area bounded by this curve, line $x=4$ and the X -axis is 8 sq . units, then the value of $a-b$ is

A
-2
B
2
C
-4
D
4
3
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The foci of a hyperbola coincide with the foci of the ellipse $\frac{x^2}{25}+\frac{y^2}{9}=1$. The equation of the hyperbola with eccentricity 2 is

A
$\frac{x^2}{12}-\frac{y^2}{4}=1$
B
$\frac{x^2}{4}-\frac{y^2}{12}=1$
C
$\frac{x^2}{12}-\frac{y^2}{16}=1$
D
$\frac{x^2}{16}-\frac{y^2}{12}=1$
4
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The foci of a hyperbola coincide with the foci of the ellipse $\frac{x^2}{25}+\frac{y^2}{9}=1$. The equation of the hyperbola with eccentricity 2 is

A
$\frac{x^2}{12}-\frac{y^2}{4}=1$
B
$\frac{x^2}{4}-\frac{y^2}{12}=1$
C
$\frac{x^2}{12}-\frac{y^2}{16}=1$
D
$\frac{x^2}{16}-\frac{y^2}{12}=1$
MHT CET Papers
EXAM MAP