1
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$\mathrm{z}=\frac{3+2 \mathrm{i} \sin \theta}{1-2 \mathrm{i} \sin \theta},(\mathrm{i}=\sqrt{-1})$ will be purely imaginary if $\theta=$

A
$2 n \pi \pm \frac{\pi}{8}$, where $n \in \mathbb{Z}$
B
$n \pi+\frac{\pi}{8}$, where $n \in \mathbb{Z}$
C
$n \pi \pm \frac{\pi}{3}$, where $n \in \mathbb{Z}$
D
$n \pi$, where $n \in \mathbb{Z}$
2
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equations of the tangents to the circle $x^2+y^2=36$ which are perpendicular to the line $5 x+y=2$, are

A
$\quad x+5 y \pm 6 \sqrt{26}=0$
B
$\quad x-5 y \pm 6 \sqrt{26}=0$
C
$\quad 5 x-y \pm 6 \sqrt{26}=0$
D
$\quad 5 x+y \pm 6 \sqrt{26}=0$
3
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\sin \mathrm{A}=\mathrm{n} \sin (\mathrm{A}+2 \mathrm{~B})$, then $\tan (\mathrm{A}+\mathrm{B})=$

A
$\frac{1+n}{2-n} \cdot \tan B$
B
$\frac{1-n}{1+n} \cdot \tan B$
C
$\frac{1-n}{2+n} \cdot \tan B$
D
$\frac{1+n}{1-n} \cdot \tan B$
4
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The number of integral values of $p$ for which the vectors $(p+1) \hat{i}-3 \hat{j}+p \hat{k}, p \hat{i}+(p+1) \hat{j}-3 \hat{k}$ and $-3 \hat{\mathrm{i}}+\mathrm{p} \hat{\mathrm{j}}+(\mathrm{p}+1) \hat{\mathrm{k}}$ are linearly dependent vectors, are

A
0
B
1
C
2
D
3
MHT CET Papers
EXAM MAP