1
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{f}(1)=3, \mathrm{f}^{\prime}(1)=2$, then $\frac{\mathrm{d}}{\mathrm{dx}}\left\{\log \left[\mathrm{f}\left(\mathrm{e}^x+2 x\right)\right]\right\}$ at $x=0$ is

A
$\frac{2}{3}$
B
$\frac{3}{2}$
C
2
D
0
2
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\frac{1}{6} \sin \theta, \cos \theta, \tan \theta$ are in G.P., then the general solution of $\theta$ is

A
$2 \mathrm{n} \pi \pm \frac{\pi}{3}, \mathrm{n} \in \mathbb{Z}$
B
$n \pi+\frac{\pi}{3}, n \in \mathbb{Z}$
C
$\mathrm{n} \pi+\frac{\pi}{4}, \mathrm{n} \in \mathbb{Z}$
D
$\quad 2 \mathrm{n} \pi \pm \frac{\pi}{6}, \mathrm{n} \in \mathbb{Z}$
3
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $f$ be a function which is continuous and differentiable for all $x$. If $\mathrm{f}(1)=1$ and $\mathrm{f}^{\prime}(x) \leq 5$ for all $x$ in $[1,5]$, then the maximum value of $\mathrm{f}(5)$ is

A
5
B
20
C
6
D
21
4
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

In a triangle ABC with usual notations if, $\cot \frac{A}{2}=\frac{b+c}{a}$, then the triangle $A B C$ is

A
an isosceles triangle.
B
an equilateral triangle.
C
a right angled triangle.
D
an obtuse angled triangle.
MHT CET Papers
EXAM MAP