The foci of a hyperbola coincide with the foci of the ellipse $\frac{x^2}{25}+\frac{y^2}{9}=1$. The equation of the hyperbola with eccentricity 2 is
A wet substance in the open air loses its moisture at a rate proportional to the moisture content. If a sheet, hung in the open air, loses half its moisture during the first hour, then $90 \%$ of the moisture will be lost in ________ hours.
If a random variable $X$ has p.d.f. $f(x)=\left\{\begin{array}{ll}\frac{a x^2}{2}+b x & , \text { if } 1 \leqslant x \leqslant 3 \\ 0 & , \text { otherwise }\end{array}\right.$ and $f(2)=2$, then the values of $a$ and $b$ are, respectively
If $\bar{p}=2 \hat{i}+\hat{k}, \bar{q}=\hat{i}+\hat{j}+\hat{k}, \bar{r}=4 \hat{i}-3 \hat{j}+7 \hat{k}$ and a vector $\overline{\mathrm{m}}$ is such that $\overline{\mathrm{m}} \times \overline{\mathrm{q}}=\overline{\mathrm{r}} \times \overline{\mathrm{q}}, \overline{\mathrm{m}} \cdot \overline{\mathrm{p}}=0$, then $\overline{\mathrm{m}}=\ldots$.