1
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If four digit numbers are formed by using the digits $1,2,3,4,5,6,7$ without repetition, then out of these numbers, the numbers exactly divisible by 25 are

A
20
B
40
C
50
D
51
2
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int \mathrm{e}^{2 x} \frac{(\sin 2 x \cos 2 x-1)}{\sin ^2 2 x} \mathrm{~d} x= $$

A
$\mathrm{e}^{2 x} \cot (2 x)+\mathrm{c}$, where c is the constant of integration
B
$2 \mathrm{e}^{2 x} \cot (2 x)+\mathrm{c}$, where c is the constant of integration
C
$4 \mathrm{e}^{2 x} \cot (2 x)+\mathrm{c}$, where c is the constant of integration
D
$\frac{1}{2} \mathrm{e}^{2 x} \cot (2 x)+\mathrm{c}$, where c is the constant of integration
3
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0
Three urns respectively contain 2 white and 3 black, 3 white and 2 black and 1 white and 4 black balls. If one ball is drawn from each um, then the probability that the selection contains 1 black and 2 white balls is
A
$\frac{13}{125}$
B
$\frac{37}{125}$
C
$\frac{28}{125}$
D
$\frac{33}{125}$
4
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

The lines $x+2 \mathrm{a} y+\mathrm{a}=0, x+3 \mathrm{~b} y+\mathrm{b}=0$, $x+4 c y+c=0$ are concurrent then $a, b, c$ are in

A
Harmonic progression
B
Geometric progression
C
Arithmetic progression
D
Arithmetico geometric progression
MHT CET Papers
EXAM MAP