1
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

An open tank with a square bottom is to contain 4000 cubic cm . of liquid. The dimensions of the tank so that the surface area of the tank is minimum, is

A
side $=20 \mathrm{~cm}$, height $=10 \mathrm{~cm}$
B
side $=10 \mathrm{~cm}$, height $=20 \mathrm{~cm}$
C
side $=10 \mathrm{~cm}$, height $=40 \mathrm{~cm}$
D
side $=20 \mathrm{~cm}$, height $=05 \mathrm{~cm}$
2
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

If four digit numbers are formed by using the digits $1,2,3,4,5,6,7$ without repetition, then out of these numbers, the numbers exactly divisible by 25 are

A
20
B
40
C
50
D
51
3
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$ \int \mathrm{e}^{2 x} \frac{(\sin 2 x \cos 2 x-1)}{\sin ^2 2 x} \mathrm{~d} x= $$

A
$\mathrm{e}^{2 x} \cot (2 x)+\mathrm{c}$, where c is the constant of integration
B
$2 \mathrm{e}^{2 x} \cot (2 x)+\mathrm{c}$, where c is the constant of integration
C
$4 \mathrm{e}^{2 x} \cot (2 x)+\mathrm{c}$, where c is the constant of integration
D
$\frac{1}{2} \mathrm{e}^{2 x} \cot (2 x)+\mathrm{c}$, where c is the constant of integration
4
MHT CET 2025 22nd April Evening Shift
MCQ (Single Correct Answer)
+2
-0
Three urns respectively contain 2 white and 3 black, 3 white and 2 black and 1 white and 4 black balls. If one ball is drawn from each um, then the probability that the selection contains 1 black and 2 white balls is
A
$\frac{13}{125}$
B
$\frac{37}{125}$
C
$\frac{28}{125}$
D
$\frac{33}{125}$
MHT CET Papers
EXAM MAP