1
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The area (in sq. units), in the first quadrant bounded by the curve $y=x^2+2$ and the lines $y=x+1, x=0$ and $x=2$, is

A
$\frac{1}{3}$
B
$\frac{2}{3}$
C
$\frac{5}{3}$
D
$\frac{8}{3}$
2
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The vector $\bar{a}=\alpha \hat{i}+2 \hat{j}+\beta \hat{k}$ lies in the plane of the vectors $\overline{\mathrm{b}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}$ and $\overline{\mathrm{c}}=\hat{\mathrm{j}}+\hat{\mathrm{k}}$ and bisects the angle between $\overline{\mathrm{b}}$ and $\overline{\mathrm{c}}$. Then which one of the following gives possible values of $\alpha$ and $\beta$ ?

A
$\alpha=1, \beta=1$
B
$\alpha=2, \beta=2$
C
$\alpha=1, \beta=2$
D
$\alpha=2, \beta=1$
3
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$2 \pi-\left(\sin ^{-1} \frac{4}{5}+\sin ^{-1} \frac{5}{13}+\sin ^{-1} \frac{16}{65}\right)$ is equal to

A
$\frac{\pi}{2}$
B
$\frac{5 \pi}{4}$
C
$\frac{7 \pi}{4}$
D
$\frac{3 \pi}{2}$
4
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

For the matrix $A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 2\end{array}\right]$, the matrix of cofactors is

A
$\left[\begin{array}{ccc}0 & 8 & -4 \\ -1 & 3 & 2 \\ 1 & -7 & 2\end{array}\right]$
B
$\left[\begin{array}{ccc}0 & -8 & 4 \\ -1 & 3 & -2 \\ 1 & -7 & 2\end{array}\right]$
C
$\left[\begin{array}{ccc}0 & 8 & -4 \\ 1 & -3 & 2 \\ -1 & 7 & -2\end{array}\right]$
D
$\left[\begin{array}{ccc}0 & -8 & 4 \\ -1 & 3 & 2 \\ -1 & -7 & 2\end{array}\right]$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12