1
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$2 \pi-\left(\sin ^{-1} \frac{4}{5}+\sin ^{-1} \frac{5}{13}+\sin ^{-1} \frac{16}{65}\right)$ is equal to

A
$\frac{\pi}{2}$
B
$\frac{5 \pi}{4}$
C
$\frac{7 \pi}{4}$
D
$\frac{3 \pi}{2}$
2
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

For the matrix $A=\left[\begin{array}{ccc}2 & 0 & -1 \\ 3 & 1 & 2 \\ -1 & 1 & 2\end{array}\right]$, the matrix of cofactors is

A
$\left[\begin{array}{ccc}0 & 8 & -4 \\ -1 & 3 & 2 \\ 1 & -7 & 2\end{array}\right]$
B
$\left[\begin{array}{ccc}0 & -8 & 4 \\ -1 & 3 & -2 \\ 1 & -7 & 2\end{array}\right]$
C
$\left[\begin{array}{ccc}0 & 8 & -4 \\ 1 & -3 & 2 \\ -1 & 7 & -2\end{array}\right]$
D
$\left[\begin{array}{ccc}0 & -8 & 4 \\ -1 & 3 & 2 \\ -1 & -7 & 2\end{array}\right]$
3
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $y=\sin ^{-1}\left(\frac{3 x}{2}-\frac{x^3}{2}\right)$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is equal to

A
$\frac{3}{2 \sqrt{x^2-4}}$
B
$\frac{3}{\sqrt{4-x^2}}$
C
$\frac{3}{2 \sqrt{1-x^2}}$
D
$\frac{4}{\sqrt{4-x^2}}$
4
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A unit vector coplanar with $\hat{i}+\hat{j}+\hat{k}$ and $2 \hat{i}+\hat{j}+\hat{k}$ and perpendicular to $\hat{i}+\hat{j}-\hat{k}$ is

A
$+\frac{1}{\sqrt{2}}(-\hat{\mathrm{j}}-\hat{\mathrm{k}})$
B
$\frac{(\hat{j}-\hat{k})}{\sqrt{2}}$
C
$\frac{-\hat{\mathrm{j}}+2 \hat{\mathrm{k}}}{\sqrt{5}}$
D
$+\frac{1}{\sqrt{26}}(\hat{\mathrm{j}}+5 \hat{\mathrm{k}})$
MHT CET Papers
EXAM MAP