1
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The maximum value of $z=4 x+2 y$, subject to the constraints $3 x+4 y \geqslant 12, x+y \leqslant 5, x, y \geqslant 0$ is

A
8
B
20
C
24
D
16
2
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\int \frac{x+1}{x\left(1+x \mathrm{e}^x\right)^2} \mathrm{dx}$ is equal to

A
$\log \left(\frac{x \mathrm{e}^x}{1+x \mathrm{e}^x}\right)+\frac{x}{1+x \mathrm{e}^x}+\mathrm{c}$, where c is a constant of integration
B
$\log \left(\frac{x \mathrm{e}^x}{1+x \mathrm{e}^x}\right)+\frac{\mathrm{e}^x}{1+x \mathrm{e}^x}+\mathrm{c}$, where c is a constant of integration
C
$\log \left(\frac{x \mathrm{e}^x}{1+x \mathrm{e}^x}\right)+\frac{1}{1+x \mathrm{e}^x}+\mathrm{c}$, where c is a constant of integration
D
$\log \left(\frac{x \mathrm{e}^x}{1+x \mathrm{e}^x}\right)-\frac{x}{1+x \mathrm{e}^x}+\mathrm{c}$, where c is a constant of integration
3
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{p} \rightarrow(\sim \mathrm{p} \vee \sim \mathrm{q})$ is false, then the truth values of p and q are respectively

A
$\mathrm{F, F}$
B
$\mathrm{F}, \mathrm{T}$
C
$\mathrm{T, T}$
D
$\mathrm{T}, \mathrm{F}$
4
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\alpha, \beta$ be the roots of the equation $x^2-\mathrm{p} x+\mathrm{r}=0$ and $\frac{\alpha}{2}, 2 \beta$ be the roots of the equation $x^2-q x+r=0$. Then the value of r is

A
$\frac{2}{9}(\mathrm{p}-\mathrm{q})(2 \mathrm{q}-\mathrm{p})$
B
$\frac{2}{9}(\mathrm{q}-\mathrm{p})(2 \mathrm{p}-\mathrm{q})$
C
$\frac{2}{9}(q-2 p)(2 q-p)$
D
$\frac{2}{9}(2 p-q)(2 q-p)$
MHT CET Papers
EXAM MAP