1
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The maximum value of $z=4 x+2 y$, subject to the constraints $3 x+4 y \geqslant 12, x+y \leqslant 5, x, y \geqslant 0$ is

A
8
B
20
C
24
D
16
2
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\int \frac{x+1}{x\left(1+x \mathrm{e}^x\right)^2} \mathrm{dx}$ is equal to

A
$\log \left(\frac{x \mathrm{e}^x}{1+x \mathrm{e}^x}\right)+\frac{x}{1+x \mathrm{e}^x}+\mathrm{c}$, where c is a constant of integration
B
$\log \left(\frac{x \mathrm{e}^x}{1+x \mathrm{e}^x}\right)+\frac{\mathrm{e}^x}{1+x \mathrm{e}^x}+\mathrm{c}$, where c is a constant of integration
C
$\log \left(\frac{x \mathrm{e}^x}{1+x \mathrm{e}^x}\right)+\frac{1}{1+x \mathrm{e}^x}+\mathrm{c}$, where c is a constant of integration
D
$\log \left(\frac{x \mathrm{e}^x}{1+x \mathrm{e}^x}\right)-\frac{x}{1+x \mathrm{e}^x}+\mathrm{c}$, where c is a constant of integration
3
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{p} \rightarrow(\sim \mathrm{p} \vee \sim \mathrm{q})$ is false, then the truth values of p and q are respectively

A
$\mathrm{F, F}$
B
$\mathrm{F}, \mathrm{T}$
C
$\mathrm{T, T}$
D
$\mathrm{T}, \mathrm{F}$
4
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\alpha, \beta$ be the roots of the equation $x^2-\mathrm{p} x+\mathrm{r}=0$ and $\frac{\alpha}{2}, 2 \beta$ be the roots of the equation $x^2-q x+r=0$. Then the value of r is

A
$\frac{2}{9}(\mathrm{p}-\mathrm{q})(2 \mathrm{q}-\mathrm{p})$
B
$\frac{2}{9}(\mathrm{q}-\mathrm{p})(2 \mathrm{p}-\mathrm{q})$
C
$\frac{2}{9}(q-2 p)(2 q-p)$
D
$\frac{2}{9}(2 p-q)(2 q-p)$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12