1
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are the angles of a triangle with $\tan \frac{A}{2}=\frac{1}{3}, \tan \frac{B}{2}=\frac{2}{3}$ then the value of $\tan \frac{C}{2}$ is

A
$\frac{-7}{9}$
B
$\frac{7}{9}$
C
$\frac{9}{7}$
D
$\frac{-9}{7}$
2
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A line with positive direction cosines passes through the point $\mathrm{P}(2,1,2)$ and makes equal angles with the coordinate axes. The line meets the plane $2 x+y+\mathrm{z}=9$ at point Q . The length of the line segment PQ equals $\qquad$ units.

A
$\frac{5}{\sqrt{3}}$
B
$2 \sqrt{3}$
C
$\frac{4}{\sqrt{3}}$
D
$4 \sqrt{3}$
3
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the tangent to the curve $x=\operatorname{acos}^3 \theta, y=\operatorname{asin}^3 \theta$ at $\theta=\frac{\pi}{4}$ is

A
$x+y=\frac{\mathrm{a}}{\sqrt{2}}$
B
$x+y=\frac{a}{2}$
C
$x+y=\frac{a}{2 \sqrt{2}}$
D
$x+y=\frac{\mathrm{a}}{8}$
4
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\lim _\limits{x \rightarrow \frac{\pi}{2}} \frac{(1-\sin x)\left(8 x^3-\pi^3\right) \cos x}{(\pi-2 x)^4}$$

A
$\frac{\pi^2}{16}$
B
$\frac{3 \pi^2}{16}$
C
$\frac{-3 \pi^2}{16}$
D
$\frac{-\pi^2}{16}$
MHT CET Papers
EXAM MAP