The smallest positive value of $x$ in degrees satisfying the equation $\tan \left(x+100^{\circ}\right)=\tan \left(x+50^{\circ}\right) \tan (x) \tan \left(x-50^{\circ}\right)$ is
If $\int \frac{\cos x-\sin x}{\sqrt{8-\sin 2 x}} d x=a \sin ^{-1}\left(\frac{\sin x+\cos x}{b}\right)+c$ Where c is a constant of integration, then the ordered pair $(\mathrm{a}, \mathrm{b})$ is equal to
Let L be the line of intersection of the planes $2 x+3 y+z=1$ and $x+3 y+2 z=2$. If L makes an angle $\alpha$ with the positive X -axis, then $\cos \alpha$ equals
Consider a group of 5 boys and 7 girls. The number of different teams, consisting of 2 boys and 3 girls that can be formed from this group if there are two specific girls A and B , who refuse to be the members of the same team, is