1
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A line with positive direction cosines passes through the point $\mathrm{P}(2,1,2)$ and makes equal angles with the coordinate axes. The line meets the plane $2 x+y+\mathrm{z}=9$ at point Q . The length of the line segment PQ equals $\qquad$ units.

A
$\frac{5}{\sqrt{3}}$
B
$2 \sqrt{3}$
C
$\frac{4}{\sqrt{3}}$
D
$4 \sqrt{3}$
2
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the tangent to the curve $x=\operatorname{acos}^3 \theta, y=\operatorname{asin}^3 \theta$ at $\theta=\frac{\pi}{4}$ is

A
$x+y=\frac{\mathrm{a}}{\sqrt{2}}$
B
$x+y=\frac{a}{2}$
C
$x+y=\frac{a}{2 \sqrt{2}}$
D
$x+y=\frac{\mathrm{a}}{8}$
3
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\lim _\limits{x \rightarrow \frac{\pi}{2}} \frac{(1-\sin x)\left(8 x^3-\pi^3\right) \cos x}{(\pi-2 x)^4}$$

A
$\frac{\pi^2}{16}$
B
$\frac{3 \pi^2}{16}$
C
$\frac{-3 \pi^2}{16}$
D
$\frac{-\pi^2}{16}$
4
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The integral $\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{d x}{\sin 2 x\left(\tan ^5 x+\cot ^5 x\right)}$ is equal to

A
$\frac{1}{5}\left(\frac{\pi}{4}-\tan ^{-1}\left(\frac{1}{3 \sqrt{3}}\right)\right)$
B
$\frac{1}{10}\left(\frac{\pi}{4}-\tan ^{-1}\left(\frac{1}{9 \sqrt{3}}\right)\right)$
C
$\frac{1}{20} \tan ^{-1}\left(\frac{1}{9 \sqrt{3}}\right)$
D
$\frac{\pi}{40}$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12