1
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The number of solutions, of $2^{1+|\cos x|+|\cos x|^2+\ldots \ldots \cdots \cdots}=4$ in $(-\pi, \pi)$, is

A
2
B
3
C
4
D
6
2
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{f}(x)=x\left[\frac{x}{2}\right]$, for $-10< x<10$, where $[t]$ denotes the greatest integer function. Then the number of points of discontinuity of $f$ is equal to

A
10
B
9
C
6
D
8
3
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\hat{a}$ and $\hat{b}$ be two unit vectors. If the vectors $\overline{\mathrm{c}}=\hat{\mathrm{a}}+2 \hat{\mathrm{~b}}$ and $\overline{\mathrm{d}}=5 \hat{\mathrm{a}}+4 \hat{\mathrm{~b}}$ are perpendicular to each other, then the angle between $\hat{a}$ and $\hat{b}$ is

A
$\frac{\pi}{6}$
B
$\cos ^{-1}\left(\frac{13}{14}\right)$
C
$\frac{\pi}{3}$
D
$\cos ^{-1}\left(\frac{-13}{14}\right)$
4
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Integrating factor of the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}+y=\frac{1+y}{x}$ is

A
$\frac{x}{\mathrm{e}^x}$
B
$x e^x$
C
$e^x$
D
$\frac{\mathrm{e}^x}{x}$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12