1
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The joint equation of pair of lines through the origin and making an angle of $\frac{\pi}{6}$ with the line $3 x+y-6=0$ is

A
$13 x^2+12 x y+3 y^2=0$
B
$13 x^2-12 x y+3 y^2=0$
C
$13 x^2+12 x y-3 y^2=0$
D
$13 x^2-12 x y-3 y^2=0$
2
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A line $4 x+y=1$ passes through the point $\mathrm{A}(2,-7)$ meets the line BC whose equation is $3 x-4 y+1=0$ at the point $B$. The equation of the line $A C$ so that $A B=A C$ is

A
$52 x+89 y+519=0$
B
$52 x+89 y-727=0$
C
$52 x-89 y+519=0$
D
$52 x-89 y-727=0$
3
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\int \frac{\mathrm{d} x}{(x+1)^{3 / 4}(x-2)^{5 / 4}}$ is equal to

A
$4\left(\frac{x+1}{x-2}\right)^{1 / 4}+\mathrm{c}$, where c is a constant of integration.
B
$4\left(\frac{x-2}{x-1}\right)^{1 / 4}+\mathrm{c}$, where c is a constant of integration.
C
$\frac{-4}{3}\left(\frac{x-2}{x+1}\right)^{1 / 4}+\mathrm{c}$, where c is a constant of integration.
D
$\frac{-4}{3}\left(\frac{x+1}{x-2}\right)^{1 / 4}+\mathrm{c}$, where c is a constant of integration.
4
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The smallest positive value of $x$ in degrees satisfying the equation $\tan \left(x+100^{\circ}\right)=\tan \left(x+50^{\circ}\right) \tan (x) \tan \left(x-50^{\circ}\right)$ is

A
$30^{\circ}$
B
$15^{\circ}$
C
$45^{\circ}$
D
$60^{\circ}$
MHT CET Papers
EXAM MAP