1
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \sqrt{\mathrm{e}^x-1} \mathrm{dx}=$$

A
$\sqrt{\mathrm{e}^x-1}+\tan ^{-1} \sqrt{\mathrm{e}^x-1}+\mathrm{c}$, (where c is constant of integration)
B
$2 \sqrt{\mathrm{e}^x-1}+\tan ^{-1} \sqrt{\mathrm{e}^x-1}+\mathrm{c}$, (where c is constant of integration)
C
$2 \sqrt{\mathrm{e}^x-1}-2 \tan ^{-1} \sqrt{\mathrm{e}^x-1}+\mathrm{c}$, (where c is constant of integration)
D
$2 \sqrt{\mathrm{e}^x-1}-\tan ^{-1} \sqrt{\mathrm{e}^x-1}+\mathrm{c}$, (where c is constant of integration)
2
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The variance of 20 observations is 5 . If each observation is multiplied by 3 and then 8 is added to each number, then variance of resulting observations is

A
$\frac{3}{4}$
B
$\frac{4}{3}$
C
$\frac{5}{3}$
D
$\frac{3}{5}$
3
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of m such that $\frac{x-4}{1}=\frac{y-2}{1}=\frac{z+m}{2}$ lies in the plane $2 x-4 y+z=7$ is

A
7
B
$-$7
C
no real value
D
4
4
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Four persons can hit a target correctly with probabilities $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}$ and $\frac{1}{5}$ respectively. If all hit at the target independently, then the probability that the target would be hit, is

A
$\frac{1}{5}$
B
$\frac{3}{5}$
C
$\frac{2}{5}$
D
$\frac{4}{5}$
MHT CET Papers
EXAM MAP