1
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A plane which is perpendicular to two planes $2 x-2 y+z=0$ and $x-y+2 z=4$, passes through $(1,2,1)$. The distance of the plane from the point $(2,3,4)$ is

A
$\sqrt{\frac{2}{5}}$ units
B
$\frac{2 \sqrt{2}}{5}$ units
C
$\frac{2}{\sqrt{5}}$ units
D
$\frac{1}{\sqrt{5}}$ units
2
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\log (x+y)=\sin (x+y)$, then $\frac{\mathrm{d} y}{\mathrm{~d} x}$ is

A
2
B
1
C
0
D
$-$1
3
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

$$\int \sqrt{\mathrm{e}^x-1} \mathrm{dx}=$$

A
$\sqrt{\mathrm{e}^x-1}+\tan ^{-1} \sqrt{\mathrm{e}^x-1}+\mathrm{c}$, (where c is constant of integration)
B
$2 \sqrt{\mathrm{e}^x-1}+\tan ^{-1} \sqrt{\mathrm{e}^x-1}+\mathrm{c}$, (where c is constant of integration)
C
$2 \sqrt{\mathrm{e}^x-1}-2 \tan ^{-1} \sqrt{\mathrm{e}^x-1}+\mathrm{c}$, (where c is constant of integration)
D
$2 \sqrt{\mathrm{e}^x-1}-\tan ^{-1} \sqrt{\mathrm{e}^x-1}+\mathrm{c}$, (where c is constant of integration)
4
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The variance of 20 observations is 5 . If each observation is multiplied by 3 and then 8 is added to each number, then variance of resulting observations is

A
$\frac{3}{4}$
B
$\frac{4}{3}$
C
$\frac{5}{3}$
D
$\frac{3}{5}$
MHT CET Papers
EXAM MAP