1
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The value of $\int \frac{\mathrm{d} x}{(x+1)^{3 / 4}(x-2)^{5 / 4}}$ is equal to

A
$4\left(\frac{x+1}{x-2}\right)^{1 / 4}+\mathrm{c}$, where c is a constant of integration.
B
$4\left(\frac{x-2}{x-1}\right)^{1 / 4}+\mathrm{c}$, where c is a constant of integration.
C
$\frac{-4}{3}\left(\frac{x-2}{x+1}\right)^{1 / 4}+\mathrm{c}$, where c is a constant of integration.
D
$\frac{-4}{3}\left(\frac{x+1}{x-2}\right)^{1 / 4}+\mathrm{c}$, where c is a constant of integration.
2
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The smallest positive value of $x$ in degrees satisfying the equation $\tan \left(x+100^{\circ}\right)=\tan \left(x+50^{\circ}\right) \tan (x) \tan \left(x-50^{\circ}\right)$ is

A
$30^{\circ}$
B
$15^{\circ}$
C
$45^{\circ}$
D
$60^{\circ}$
3
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\int \frac{\cos x-\sin x}{\sqrt{8-\sin 2 x}} d x=a \sin ^{-1}\left(\frac{\sin x+\cos x}{b}\right)+c$ Where c is a constant of integration, then the ordered pair $(\mathrm{a}, \mathrm{b})$ is equal to

A
$(1,3)$
B
$(3,1)$
C
$(-1,3)$
D
$(-3,1)$
4
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let L be the line of intersection of the planes $2 x+3 y+z=1$ and $x+3 y+2 z=2$. If L makes an angle $\alpha$ with the positive X -axis, then $\cos \alpha$ equals

A
1
B
$\frac{1}{\sqrt{2}}$
C
$\frac{1}{\sqrt{3}}$
D
$\frac{1}{2}$
MHT CET Papers
EXAM MAP