Let $\bar{a}=3 \hat{i}-\alpha \hat{j}+\hat{k}$ and $\bar{b}=\hat{i}+\alpha \hat{j}+3 \hat{k}$. If the area of the parallelogram whose adjacent sides are represented by the vectors $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$, is $8 \sqrt{3}$ sq. units, then $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}$ is equal to
If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are the angles of a triangle with $\tan \frac{A}{2}=\frac{1}{3}, \tan \frac{B}{2}=\frac{2}{3}$ then the value of $\tan \frac{C}{2}$ is
A line with positive direction cosines passes through the point $\mathrm{P}(2,1,2)$ and makes equal angles with the coordinate axes. The line meets the plane $2 x+y+\mathrm{z}=9$ at point Q . The length of the line segment PQ equals $\qquad$ units.
The equation of the tangent to the curve $x=\operatorname{acos}^3 \theta, y=\operatorname{asin}^3 \theta$ at $\theta=\frac{\pi}{4}$ is