1
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\bar{a}=3 \hat{i}-\alpha \hat{j}+\hat{k}$ and $\bar{b}=\hat{i}+\alpha \hat{j}+3 \hat{k}$. If the area of the parallelogram whose adjacent sides are represented by the vectors $\overline{\mathrm{a}}$ and $\overline{\mathrm{b}}$, is $8 \sqrt{3}$ sq. units, then $\overline{\mathrm{a}} \cdot \overline{\mathrm{b}}$ is equal to

A
1
B
2
C
3
D
4
2
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are the angles of a triangle with $\tan \frac{A}{2}=\frac{1}{3}, \tan \frac{B}{2}=\frac{2}{3}$ then the value of $\tan \frac{C}{2}$ is

A
$\frac{-7}{9}$
B
$\frac{7}{9}$
C
$\frac{9}{7}$
D
$\frac{-9}{7}$
3
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A line with positive direction cosines passes through the point $\mathrm{P}(2,1,2)$ and makes equal angles with the coordinate axes. The line meets the plane $2 x+y+\mathrm{z}=9$ at point Q . The length of the line segment PQ equals $\qquad$ units.

A
$\frac{5}{\sqrt{3}}$
B
$2 \sqrt{3}$
C
$\frac{4}{\sqrt{3}}$
D
$4 \sqrt{3}$
4
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the tangent to the curve $x=\operatorname{acos}^3 \theta, y=\operatorname{asin}^3 \theta$ at $\theta=\frac{\pi}{4}$ is

A
$x+y=\frac{\mathrm{a}}{\sqrt{2}}$
B
$x+y=\frac{a}{2}$
C
$x+y=\frac{a}{2 \sqrt{2}}$
D
$x+y=\frac{\mathrm{a}}{8}$
MHT CET Papers
EXAM MAP