1
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the mean and the variance of a Binomial variate X are 2 and 1 respectively, then the probability that X takes a value greater than one is equal to

A
$\frac{5}{16}$
B
$\frac{11}{16}$
C
$\frac{12}{16}$
D
$\frac{15}{16}$
2
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The general solution of the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y+\sqrt{x^2-y^2}}{x}$ is

A
$\sin ^{-1} y=\log x+c$, where c is a constant of integration.
B
$\frac{y}{x}=\sin ^{-1} x+\mathrm{c}$, where c is a constant of integration.
C
$\frac{y}{x}=\sqrt{x^2-y^2}+\mathrm{c}$, where c is a constant of integration.
D
$\sin ^{-1}\left(\frac{y}{x}\right)=\log x+\mathrm{c}$, where c is a constant of integration.
3
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

A bag contains 4 red and 3 black balls. One ball is drawn and then replaced in the bag and the process is repeated. Let X denote the number of times black ball is drawn in 3 draws. Assuming that at each draw each ball is equally likely to be selected, then probability distribution of $X$ is given by

A
$x$ 0 1 2 3
$\mathrm{P}(x)$ $\left(\frac{4}{7}\right)^3$ $\frac{9}{7} \cdot\left(\frac{4}{7}\right)^2$ $\frac{12}{7} \cdot\left(\frac{3}{7}\right)^2$ $\left(\frac{3}{7}\right)^3$
B
$x$ 0 1 2 3
$\mathrm{P}(x)$ $\left(\frac{3}{7}\right)^3$ $\frac{12}{7} \cdot\left(\frac{3}{7}\right)^2$ $\frac{9}{7} \cdot\left(\frac{4}{7}\right)^2$ $\left(\frac{4}{7}\right)^3$
C
$x$ 0 1 2 3
$\mathrm{P}(x)$ $\left(\frac{3}{7}\right)^3$ $\frac{9}{7} \cdot\left(\frac{4}{7}\right)^2$ $\frac{12}{7} \cdot\left(\frac{3}{7}\right)^2$ $\left(\frac{4}{7}\right)^3$
D
$x$ 0 1 2 3
$\mathrm{P}(x)$ $\left(\frac{4}{7}\right)^3$ $\frac{12}{7} \cdot\left(\frac{4}{7}\right)^2$ $\frac{9}{7} \cdot\left(\frac{3}{7}\right)^2$ $\left(\frac{3}{7}\right)^3$
4
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

In a certain culture of bacteria, the rate of increase is proportional to the number present. If there are $10^4$ at the end of 3 hours and $4 \cdot 10^4$ at the end of 5 hours, then there were _________ the beginning.

A
$10^4$
B
$\frac{10^4}{4}$
C
$410^4$
D
$\frac{10^4}{8}$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12