In the working of photodiode, the reverse current depends on
A satellite is revolving around a planet in a circular orbit close to its surface. Let ' $\rho$ ' be the mean density and ' $R$ ' be the radius of the planet. Then the period of the satellite is ( $\mathrm{G}=$ universal constant of gravitation)
A current carrying circular loop of radius ' $R$ ' and current carrying long straight wire are placed in the same plane. $I_c$ and $I_w$ are the currents through circular loop and long straight wire respectively. The perpendicular distance between centre of the circular loop and wire is ' d '. The magnetic field at the centre of the loop will be zero when separation ' $d$ ' is equal to
A square loop ABCD is moving with constant velocity ' $\vec{v}$ ' in a uniform magnetic field ' $\vec{B}$ ' which is perpendicular to the plane of paper and directed outward. The resistance of coil is ' $R$ ', then the rate of production of heat energy in the loop is [ L - length of side of loop]