1
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The integral $\int_{\frac{\pi}{6}}^{\frac{\pi}{4}} \frac{d x}{\sin 2 x\left(\tan ^5 x+\cot ^5 x\right)}$ is equal to

A
$\frac{1}{5}\left(\frac{\pi}{4}-\tan ^{-1}\left(\frac{1}{3 \sqrt{3}}\right)\right)$
B
$\frac{1}{10}\left(\frac{\pi}{4}-\tan ^{-1}\left(\frac{1}{9 \sqrt{3}}\right)\right)$
C
$\frac{1}{20} \tan ^{-1}\left(\frac{1}{9 \sqrt{3}}\right)$
D
$\frac{\pi}{40}$
2
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the circle, concentric with the circle $x^2+y^2-6 x-4 y-12=0$ and touching the $\mathrm{X}$-axis is

A
$x^2+y^2-6 x-4 y+5=0$
B
$x^2+y^2-6 x-4 y+17=0$
C
$x^2+y^2-6 x-4 y+9=0$
D
$x^2+y^2-6 x-4 y+4=0$
3
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{f}(x)=\mathrm{e}^x, \mathrm{~g}(x)=\sin ^{-1} x$ and $\mathrm{h}(x)=\mathrm{f}(\mathrm{g}(x))$, then $\left(\frac{h^{\prime}(x)}{h(x)}\right)^2$ is equal to

A
$\frac{1}{\sqrt{1-x^2}}$
B
$\left(1-x^2\right)^2$
C
$\frac{1}{1-x^2}$
D
$\left(1-x^2\right)$
4
MHT CET 2024 9th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The joint equation of pair of lines through the origin and making an angle of $\frac{\pi}{6}$ with the line $3 x+y-6=0$ is

A
$13 x^2+12 x y+3 y^2=0$
B
$13 x^2-12 x y+3 y^2=0$
C
$13 x^2+12 x y-3 y^2=0$
D
$13 x^2-12 x y-3 y^2=0$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12