1
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The integral $\int_{\frac{-1}{2}}^{\frac{1}{2}}\left([x]+\log _{\mathrm{e}}\left(\frac{1+x}{1-x}\right)\right) \mathrm{d} x$, where $[x]$ represent greatest integer function, equals

A
$-\frac{1}{2}$
B
$\log _{\mathrm{c}}\left(\frac{1}{2}\right)$
C
$\frac{1}{2}$
D
$ 2 \log _{\mathrm{e}}\left(\frac{1}{2}\right)$
2
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the function $\mathrm{f}(x)=x^3+\mathrm{e}^{\frac{x}{2}}$ and $\mathrm{g}(x)=\mathrm{f}^{-1}(x)$ then the value of $g^{\prime}(1)$ is

A
1
B
0
C
2
D
$\frac{1}{2}$
3
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A wire of length 2 units is cut into two parts, which are bent respectively to form a square of side $x$ units and a circle of radius of r units. If the sum of the areas of square and the circle so formed is minimum, then

A
$2 x=(\pi+4) \mathrm{r}$
B
$(4-\pi) x=\pi \mathrm{r}$
C
$x=2 \mathrm{r}$
D
$2 x=\mathrm{r}$
4
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{L}_1: \frac{x+1}{3}=\frac{y+2}{1}=\frac{z+1}{2}$ and $\mathrm{L}_2: \frac{x-2}{1}=\frac{y+2}{2}=\frac{z-3}{3}$ be two given lines. Then the unit vector perpendicular to $L_1$ and $L_2$ is

A
$\frac{-\hat{\mathrm{i}}+7 \hat{\mathrm{j}}+7 \hat{\mathrm{k}}}{\sqrt{99}}$
B
$\frac{-\hat{\mathrm{i}}-7 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}}{5 \sqrt{3}}$
C
$\frac{-\hat{i}+7 \hat{j}+5 \hat{k}}{5 \sqrt{3}}$
D
$\frac{7 \hat{\mathrm{i}}-7 \hat{\mathrm{j}}-7 \hat{\mathrm{k}}}{\sqrt{99}}$
MHT CET Papers
EXAM MAP