1
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The integral $\int_{\frac{-1}{2}}^{\frac{1}{2}}\left([x]+\log _{\mathrm{e}}\left(\frac{1+x}{1-x}\right)\right) \mathrm{d} x$, where $[x]$ represent greatest integer function, equals

A
$-\frac{1}{2}$
B
$\log _{\mathrm{c}}\left(\frac{1}{2}\right)$
C
$\frac{1}{2}$
D
$ 2 \log _{\mathrm{e}}\left(\frac{1}{2}\right)$
2
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the function $\mathrm{f}(x)=x^3+\mathrm{e}^{\frac{x}{2}}$ and $\mathrm{g}(x)=\mathrm{f}^{-1}(x)$ then the value of $g^{\prime}(1)$ is

A
1
B
0
C
2
D
$\frac{1}{2}$
3
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A wire of length 2 units is cut into two parts, which are bent respectively to form a square of side $x$ units and a circle of radius of r units. If the sum of the areas of square and the circle so formed is minimum, then

A
$2 x=(\pi+4) \mathrm{r}$
B
$(4-\pi) x=\pi \mathrm{r}$
C
$x=2 \mathrm{r}$
D
$2 x=\mathrm{r}$
4
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\mathrm{L}_1: \frac{x+1}{3}=\frac{y+2}{1}=\frac{z+1}{2}$ and $\mathrm{L}_2: \frac{x-2}{1}=\frac{y+2}{2}=\frac{z-3}{3}$ be two given lines. Then the unit vector perpendicular to $L_1$ and $L_2$ is

A
$\frac{-\hat{\mathrm{i}}+7 \hat{\mathrm{j}}+7 \hat{\mathrm{k}}}{\sqrt{99}}$
B
$\frac{-\hat{\mathrm{i}}-7 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}}{5 \sqrt{3}}$
C
$\frac{-\hat{i}+7 \hat{j}+5 \hat{k}}{5 \sqrt{3}}$
D
$\frac{7 \hat{\mathrm{i}}-7 \hat{\mathrm{j}}-7 \hat{\mathrm{k}}}{\sqrt{99}}$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12