1
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let the vectors $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ and $\overline{\mathrm{d}}$ be such that $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times(\overline{\mathrm{c}} \times \overline{\mathrm{d}})=\overline{0}$. Let $\mathrm{P}_1$ and $\mathrm{P}_2$ be the planes determined by the pair of vectors $\bar{a}, \bar{b}$ and $\bar{c}, \bar{d}$ respectively, then the angle between $P_1$ and $P_2$ is

A
0
B
$\frac{\pi}{4}$
C
$\frac{\pi}{3}$
D
$\frac{\pi}{2}$
2
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $I=\int e^{\sin \theta}\left(\log \sin \theta+\operatorname{cosec}^2 \theta\right) \cos \theta d \theta$, then $I$ is equal to

A
$\mathrm{e}^{\sin \theta}\left(\log \sin \theta+\operatorname{cosec}^2 \theta\right)+\mathrm{c}$, (where c is a constant of integration)
B
$\mathrm{e}^{\sin \theta}(\log \sin \theta+\operatorname{cosec} \theta)+\mathrm{c}$, (where c is a constant of integration)
C
$\mathrm{e}^{\sin \theta}(\log \sin \theta-\operatorname{cosec} \theta)+\mathrm{c}$, (where c is a constant of integration)
D
$\mathrm{e}^{\sin \theta}\left(\log \sin \theta-\operatorname{cosec}^2 \theta\right)+\mathrm{c}$, (where c is a constant of integration)
3
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the circle which has its centre at the point $(3,4)$ and touches the line $5 x+12 y-11=0$ is

A
$x^2+y^2-6 x-8 y+9=0$
B
$x^2+y^2-6 x-8 y+25=0$
C
$x^2+y^2-6 x-8 y-9=0$
D
$x^2+y^2-6 x-8 y-25=0$
4
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A plane which is perpendicular to two planes $2 x-2 y+z=0$ and $x-y+2 z=4$, passes through $(1,-2,1)$. The distance of the plane from the point $(1,2,2)$ is

A
0 units
B
1 units
C
$\sqrt{2}$ units
D
$2 \sqrt{2}$ units
MHT CET Papers
EXAM MAP