If $f(x)=\log _e\left(\frac{1-x}{1+x}\right),|x|<1$, then $f\left(\frac{2 x}{1+x^2}\right)$ is equal to
Let the vectors $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ and $\overline{\mathrm{d}}$ be such that $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times(\overline{\mathrm{c}} \times \overline{\mathrm{d}})=\overline{0}$. Let $\mathrm{P}_1$ and $\mathrm{P}_2$ be the planes determined by the pair of vectors $\bar{a}, \bar{b}$ and $\bar{c}, \bar{d}$ respectively, then the angle between $P_1$ and $P_2$ is
If $I=\int e^{\sin \theta}\left(\log \sin \theta+\operatorname{cosec}^2 \theta\right) \cos \theta d \theta$, then $I$ is equal to
The equation of the circle which has its centre at the point $(3,4)$ and touches the line $5 x+12 y-11=0$ is