1
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $f(x)=\log _e\left(\frac{1-x}{1+x}\right),|x|<1$, then $f\left(\frac{2 x}{1+x^2}\right)$ is equal to

A
$2 \mathrm{f}\left(x^2\right)$
B
$-2 \mathrm{f}(x)$
C
$(\mathrm{f}(x))^2$
D
$2 \mathrm{f}(x)$
2
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let the vectors $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ and $\overline{\mathrm{d}}$ be such that $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times(\overline{\mathrm{c}} \times \overline{\mathrm{d}})=\overline{0}$. Let $\mathrm{P}_1$ and $\mathrm{P}_2$ be the planes determined by the pair of vectors $\bar{a}, \bar{b}$ and $\bar{c}, \bar{d}$ respectively, then the angle between $P_1$ and $P_2$ is

A
0
B
$\frac{\pi}{4}$
C
$\frac{\pi}{3}$
D
$\frac{\pi}{2}$
3
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $I=\int e^{\sin \theta}\left(\log \sin \theta+\operatorname{cosec}^2 \theta\right) \cos \theta d \theta$, then $I$ is equal to

A
$\mathrm{e}^{\sin \theta}\left(\log \sin \theta+\operatorname{cosec}^2 \theta\right)+\mathrm{c}$, (where c is a constant of integration)
B
$\mathrm{e}^{\sin \theta}(\log \sin \theta+\operatorname{cosec} \theta)+\mathrm{c}$, (where c is a constant of integration)
C
$\mathrm{e}^{\sin \theta}(\log \sin \theta-\operatorname{cosec} \theta)+\mathrm{c}$, (where c is a constant of integration)
D
$\mathrm{e}^{\sin \theta}\left(\log \sin \theta-\operatorname{cosec}^2 \theta\right)+\mathrm{c}$, (where c is a constant of integration)
4
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The equation of the circle which has its centre at the point $(3,4)$ and touches the line $5 x+12 y-11=0$ is

A
$x^2+y^2-6 x-8 y+9=0$
B
$x^2+y^2-6 x-8 y+25=0$
C
$x^2+y^2-6 x-8 y-9=0$
D
$x^2+y^2-6 x-8 y-25=0$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12