1
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A plane which is perpendicular to two planes $2 x-2 y+z=0$ and $x-y+2 z=4$, passes through $(1,-2,1)$. The distance of the plane from the point $(1,2,2)$ is

A
0 units
B
1 units
C
$\sqrt{2}$ units
D
$2 \sqrt{2}$ units
2
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of the expression $\sqrt{3} \operatorname{cosec} 20^{\circ}-\sec 20^{\circ}$ is equal to

A
2
B
$\frac{2 \sin 20^{\circ}}{\sin 40^{\circ}}$
C
4
D
$4 \frac{\sin 20^{\circ}}{\sin 40^{\circ}}$
3
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\bar{a}, \bar{b}$ and $\overline{\mathrm{c}}$ be three vectors having magnitude 1,1 and 2 respectively. If $\overline{\mathrm{a}} \times(\overline{\mathrm{a}} \times \overline{\mathrm{c}})+\overline{\mathrm{b}}=\overline{0}$, then the acute angle between $\overline{\mathrm{a}}$ and $\overline{\mathrm{c}}$ is

A
$\frac{\pi}{6}$
B
$\frac{\pi}{4}$
C
$\frac{\pi}{3}$
D
$\frac{\pi}{2}$
4
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The area bounded between the curves $y=a x^2$ and $x=a y^2(a>0)$ is 1 sq. units, then the value of a is

A
$\frac{1}{\sqrt{3}}$
B
$\frac{1}{2}$
C
1
D
$\frac{1}{3}$
MHT CET Papers
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12