1
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A plane which is perpendicular to two planes $2 x-2 y+z=0$ and $x-y+2 z=4$, passes through $(1,-2,1)$. The distance of the plane from the point $(1,2,2)$ is

A
0 units
B
1 units
C
$\sqrt{2}$ units
D
$2 \sqrt{2}$ units
2
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The value of the expression $\sqrt{3} \operatorname{cosec} 20^{\circ}-\sec 20^{\circ}$ is equal to

A
2
B
$\frac{2 \sin 20^{\circ}}{\sin 40^{\circ}}$
C
4
D
$4 \frac{\sin 20^{\circ}}{\sin 40^{\circ}}$
3
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\bar{a}, \bar{b}$ and $\overline{\mathrm{c}}$ be three vectors having magnitude 1,1 and 2 respectively. If $\overline{\mathrm{a}} \times(\overline{\mathrm{a}} \times \overline{\mathrm{c}})+\overline{\mathrm{b}}=\overline{0}$, then the acute angle between $\overline{\mathrm{a}}$ and $\overline{\mathrm{c}}$ is

A
$\frac{\pi}{6}$
B
$\frac{\pi}{4}$
C
$\frac{\pi}{3}$
D
$\frac{\pi}{2}$
4
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The area bounded between the curves $y=a x^2$ and $x=a y^2(a>0)$ is 1 sq. units, then the value of a is

A
$\frac{1}{\sqrt{3}}$
B
$\frac{1}{2}$
C
1
D
$\frac{1}{3}$
MHT CET Papers
EXAM MAP