A random variable $X$ has the following probability distribution
$\mathrm{X:}$ | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
$\mathrm{P(X):}$ | $\mathrm{k^2}$ | $\mathrm{2k}$ | $\mathrm{k}$ | $\mathrm{2k}$ | $\mathrm{5k^2}$ |
Then $\mathrm{P(X > 2)}$ is equal to
The number of distinct real values of $\lambda$, for which the vectors $-\lambda^2 \hat{i}+\hat{j}+\hat{k}, \hat{i}-\lambda^2 \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}-\lambda^2 \hat{k}$ are coplanar, is
If $f(x)=\log _e\left(\frac{1-x}{1+x}\right),|x|<1$, then $f\left(\frac{2 x}{1+x^2}\right)$ is equal to
Let the vectors $\overline{\mathrm{a}}, \overline{\mathrm{b}}, \overline{\mathrm{c}}$ and $\overline{\mathrm{d}}$ be such that $(\overline{\mathrm{a}} \times \overline{\mathrm{b}}) \times(\overline{\mathrm{c}} \times \overline{\mathrm{d}})=\overline{0}$. Let $\mathrm{P}_1$ and $\mathrm{P}_2$ be the planes determined by the pair of vectors $\bar{a}, \bar{b}$ and $\bar{c}, \bar{d}$ respectively, then the angle between $P_1$ and $P_2$ is