1
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

A random variable has the following probability distribution

$\mathrm{X:}$ 0 1 2 3 4 5 6 7
$\mathrm{P}(x):$ 0 $\mathrm{2p}$ $\mathrm{2p}$ $\mathrm{3p}$ $\mathrm{p^2}$ $\mathrm{2p^2}$ $\mathrm{7p^2}$ $\mathrm{2p}$

Then the value of p is

A
$\frac{1}{10}$
B
$\frac{1}{30}$
C
$\frac{1}{100}$
D
$\frac{3}{20}$
2
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let A and B be two events such that the probability that exactly one of them occurs is $\frac{2}{5}$ and the probability that A or B occurs is $\frac{1}{2}$, then the probability of both of them occur together is

A
0.1
B
0.2
C
0.01
D
0.02
3
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\left(-2-\frac{1}{3} \mathrm{i}\right)^3=\frac{x+\mathrm{i} y}{27}, \mathrm{i}=\sqrt{-1}$, where $x$ and $y$ are real numbers, then $(y-x)$ has the value

A
$-91$
B
$-85$
C
$85$
D
$91$
4
MHT CET 2024 4th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

The shaded region in the following figure is the solution set of the inequations

MHT CET 2024 4th May Morning Shift Mathematics - Linear Programming Question 26 English

A
$x+2 y \leq 6,5 x+3 y \geq 15, x \leq 7, y \leq 6, x$, $y \geq 0$
B
$x+2 y \geq 6,5 x+3 y \geq 15, x \leq 7, y \leq 6, x$, $y \geq 0$
C
$x+2 y \geq 6,5 x+3 y \leq 15, x \geq 7, y \leq 6, x$, $y \geq 0$
D
$x+2 y \leq 6,5 x+3 y \leq 15, x \leq 7, y \geq 6, x$, $y \geq 0$
MHT CET Papers
EXAM MAP